50 research outputs found

    Currencies in resource theories

    Full text link
    How may we quantify the value of physical resources, such as entangled quantum states, heat baths or lasers? Existing resource theories give us partial answers; however, these rely on idealizations, like perfectly independent copies of states or exact knowledge of a quantum state. Here we introduce the general tool of currencies to quantify realistic descriptions of resources, applicable in experimental settings when we do not have perfect control over a physical system, when only the neighbourhood of a state or some of its properties are known, or when there is no obvious way to decompose a global space into subsystems. Currencies are a special set of resources chosen to quantify all others - like Bell pairs in LOCC or a lifted weight in thermodynamics. We show that from very weak assumptions on the theory we can already find useful currencies that give us necessary and sufficient conditions for resource conversion, and we build up more results as we impose further structure. This work is an application of Resource theories of knowledge [arXiv:1511.08818], generalizing axiomatic approaches to thermodynamic entropy, work and currencies made of local copies.Comment: 13 pages + appendix. Contains a one-page summary of the paper Resource theories of knowledge [arXiv:1511.08818

    Resource theories of knowledge

    Full text link
    How far can we take the resource theoretic approach to explore physics? Resource theories like LOCC, reference frames and quantum thermodynamics have proven a powerful tool to study how agents who are subject to certain constraints can act on physical systems. This approach has advanced our understanding of fundamental physical principles, such as the second law of thermodynamics, and provided operational measures to quantify resources such as entanglement or information content. In this work, we significantly extend the approach and range of applicability of resource theories. Firstly we generalize the notion of resource theories to include any description or knowledge that agents may have of a physical state, beyond the density operator formalism. We show how to relate theories that differ in the language used to describe resources, like micro and macroscopic thermodynamics. Finally, we take a top-down approach to locality, in which a subsystem structure is derived from a global theory rather than assumed. The extended framework introduced here enables us to formalize new tasks in the language of resource theories, ranging from tomography, cryptography, thermodynamics and foundational questions, both within and beyond quantum theory.Comment: 28 pages featuring figures, examples, map and neatly boxed theorems, plus appendi

    Axiomatic relation between thermodynamic and information-theoretic entropies

    Get PDF
    Thermodynamic entropy, as defined by Clausius, characterizes macroscopic observations of a system based on phenomenological quantities such as temperature and heat. In contrast, information-theoretic entropy, introduced by Shannon, is a measure of uncertainty. In this Letter, we connect these two notions of entropy, using an axiomatic framework for thermodynamics [Lieb, Yngvason, Proc. Roy. Soc.(2013)]. In particular, we obtain a direct relation between the Clausius entropy and the Shannon entropy, or its generalisation to quantum systems, the von Neumann entropy. More generally, we find that entropy measures relevant in non-equilibrium thermodynamics correspond to entropies used in one-shot information theory

    miTuner - a kit for microRNA based gene expression tuning in mammalian cells

    Get PDF
    The purpose of this RFC is to introduce a modular expression tuning kit for use in mammalian cells. The kit enables the regulation of the gene expression of any gene of interest (GOI) based on synthetic microRNAs, endogenous microRNAs or a combination of both

    miMeasure – a standard for miRNA binding site characterization in mammalian cells

    Get PDF
    This RFC proposes a standard for the quantitative characterization of miRNA binding sites (miRNA-BS) in mammalian cells. The miMeasure standard introduces a ready-to-use standard measurement plasmid (pSMB_miMeasure, BBa_K337049) enabling rapid experimental characterization of any miRNA-BS of choice. We recommend a new standard unit, RKDU (relative knock-down unit) to describe the knock-down efficiency of a miRNA-BS in a specific cell type. pSMB_miMeasure allows for an easy and fast measurement of RKDU while providing effective normalization against variance stemming from differences in transfection efficiency and from other sources

    Currencies in Resource Theories

    No full text
    How may we quantify the value of physical resources, such as entangled quantum states, heat baths or lasers? Existing resource theories give us partial answers; however, these rely on idealizations, like perfectly independent copies of states or exact knowledge of a quantum state. Here we introduce the general tool of “currencies” to quantify realistic descriptions of resources, applicable in experimental settings when we do not have perfect control over a physical system, when only the neighbourhood of a state or some of its properties are known, or when slight correlations cannot be ruled out. Currencies are a subset of resources chosen to quantify all the other resources—like Bell pairs in LOCC or a lifted weight in thermodynamics. We show that from very weak assumptions in the theory we can already find useful currencies that give us necessary and sufficient conditions for resource conversion, and we build up more results as we impose further structure. This work generalizes axiomatic approaches to thermodynamic entropy, work and currencies made of local copies. In particular, by applying our approach to the resource theory of unital maps, we derive operational single-shot entropies for arbitrary, non-probabilistic descriptions of resources.ISSN:1099-430

    How efficient are microalgae in treating pharmaceutical waste?

    No full text

    Immunofluorescence versus xTAG multiplex PCR for the detection of respiratory picornavirus infections in children

    No full text
    BACKGROUND: Polymerase chain reaction (PCR) is a sensitive tool for detection of respiratory picornaviruses. However, the clinical relevance of picornavirus detection by PCR is unclear. Immunofluorescence (IF), widely used to detect other respiratory viruses, has recently been introduced as a promising detection method for respiratory picornaviruses. OBJECTIVES: To compare the clinical manifestations of respiratory picornavirus infections detected by IF with those of respiratory picornavirus infections detected by xTAG multiplex PCR in hospitalized children. STUDY DESIGN: During a 1-year period, nasopharyngeal aspirates (NPA) from all children hospitalized due to an acute respiratory infection were prospectively analyzed by IF. All respiratory picornavirus positive IF samples and 100 IF negative samples were further tested with xTAG multiplex PCR. After exclusion of children with co-morbidities and viral co-infections, monoinfections with respiratory picornaviruses were detected in 108 NPA of 108 otherwise healthy children by IF and/or PCR. We compared group 1 children (IF and PCR positive, n=84) with group 2 children (IF negative and PCR positive, n=24) with regard to clinical manifestations of the infection. RESULTS: Wheezy bronchitis was diagnosed more often in group 1 than in group 2 (71% vs. 46%, p=0.028). In contrast, group 2 patients were diagnosed more frequently with pneumonia (17% vs. 6%, p=0.014) accompanied by higher levels of C-reactive protein (46mg/l vs. 11mg/l, p=0.009). CONCLUSIONS: Picornavirus detection by IF in children with acute respiratory infection is associated with the clinical presentation of wheezy bronchitis. The finding of a more frequent diagnosis of pneumonia in picornavirus PCR positive but IF negative children warrants further investigation
    corecore